
Lecture 14: Linear Codes: Examples and Properties

Linear Codes



Space

Given a field (F,+, ·)
We consider the set of all n-tuples with entries in F
That is, we will consider the set Fn

The total number of elements in the set if |F|n
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Basic Terminology

A code C ⊆ Fn

A codeword c = (c1, . . . , cn) ∈ C such that all c1, . . . , cn ∈ F
Block length is n
Weight of a codeword: wt(c) =

∣∣{i : ci 6= 0}
∣∣

(Hamming) Distance dH(c , c
′) = wt(c − c ′)

Distance of a code: d(C) = min c,c ′∈C
c 6=c ′

wt(c − c ′)

(N,K , d)-code: |C| = K , |F|n = N and d(C) = d
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Intuition

Given fixed F and n

We want to maximize |C| and d(C)
|C| determines how much information can be transmitted over
the channel, and
d(C) determines the robustness of the encoding (because, to
force the maximum likelihood decoding algorithm to output an
incorrect codeword, the channel needs to introduce at least⌈
d(C)/2

⌉
errors)

We will see later that these two parameters are conflicting and
there is a trade-off of these two parameters
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Linear Codes

Linear Code: If C is a vector subspace of Fn

Suppose (c1, . . . , ck) is a basis of the vector subspace C
[n, k , d ]F code: A code C that is a vector subspace of Fn, of
dimension k , and d(C) = d

The generator matrix G of a code C is defined to a matrix in
Fk×n as defined below.

G =


c1
c2
...
ck


Note that

(
α1 α2 · · · αk

)
· G generates all codewords in

C, where α1, . . . , αk ∈ F
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Distance of a Linear Code

Claim

d(C) = min
c∈C

wt(c)

Proof.
Let d(C) is realized by the distance between the codewords c
and c ′

Note that c − c ′ is also a codeword (because C is a vector
space)
Note that wt(c − c ′) = d(C)
If there exists c̃ such that wt(c̃) < d(C) then dH(0, c̃) < d(C)
(which is a contradiction)
Therefore, we have the claim
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Example:Repetition code

The repetition code {0n, 1n} has generator matrix n-times︷ ︸︸ ︷
1 1 · · · 1


It is an [n, 1, n]2 code
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Equivalent Code

Let G be the generator matrix of a code C
Let G ′ be the generator matrix obtained by replacing the row
Gi ,∗ in the matrix G by the row αGi ,∗, for α ∈ F∗, then G ′

generates the same code as G
Let G ′ be the generator matrix obtained by replacing the row
Gi ,∗ in the matrix G by Gi ,∗ + αGj ,∗, for i 6= j and α ∈ F∗,
then G ′ generates the same code as G
We write G ≡ G ′
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Similar Code

Suppose G ′ is a generator matrix obtained by swapping two
columns of the generator matrix G

Then the code generated by G ′ is similar to the code
generated by G

We write G ∼ G ′

If G is the generator matrix of an [n, k , d ]F code, then G ′ also
generates an [n, k , d ]F code (the codewords can be bijectively
mapped where the mapping swaps the i-th and the j-th
coordinate of the codeword)

Linear Codes



Systematic Form

Let G be a generator matrix of an [n, k, d ]F code
Then there exists P ∈ Fk×(n−k) such that

G ∼
[
Ik×k |P

]
,

where Ik×k is the identity matrix of dimension k × k

Proof Outline: Row rank = Column rank, swap k independent
columns of G into its first k columns, and perform Gaussian
Elimination
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Dual Code I

Define the matrix H in F(n−k)×n as follows

H =
[
−P>

∣∣∣ I(n−k)×(n−k)]
Claim
The inner product of any row Gi ,∗ and any row Hj ,∗ is always 0.

Proof.

Note that Gi ,∗ =
(
δi ,Pi ,∗

)
Note that Hi ,∗ =

(
−P>∗,j , δj

)
Their inner product is −Pi ,j + Pi ,j = 0
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Dual Code II

Claim
Every codeword in the code generated by G is orthogonal to every
codeword in the code generated by H
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Dual Code III

Proof.
A codeword in the code generated by G looks like∑k

i=1 αi · Gi ,∗, for α1, . . . , αk ∈ F
A codeword in the code generated by H looks like∑n−k

j=1 βj · Hj ,∗, for β1, . . . , βn−k ∈ F
Now, we have〈

k∑
i=1

αiGi ,∗,

n−k∑
j=1

βjHj ,∗

〉
=

k∑
i=1

n−k∑
j=1

αiβj
〈
Gi ,∗,Hj ,∗

〉
=

k∑
i=1

n−k∑
j=1

αiβj · 0 = 0
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Dual Code IV

Let C be the code generated by G

We denote the code generated by H as C⊥ (dual of C)

Show that
(
C⊥
)⊥

= C

We represent the d(C⊥) by d⊥

Let t(H) represent the minimum number of columns of H that
can be (non-trivially) linearly combined to yield the 0 column

Claim

d(C) = t(H)

Proof is left as an exercise
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Hadamard Code

The columns of the generator matrix G has all binary strings
of length r

For example, for r = 3, we have

G =

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1


This generates a [2r , r , 2r−1]2 code (Prove this)
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Punctured Hadamard Code

From the generator matrix of the Hadamard Code, we remove
all those columns that have a 0 as their top-most entry
For example, for r = 3, we have

G =

1 1 1 1
0 0 1 1
0 1 0 1


This generates a [2r−1, r , 2r−2]2 code (Prove this)
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Simplex Code

From the generator matrix of the Hadamard Code, we remove
the all-0 column
For example, for r = 3, we have

G =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


This generates a [2r − 1, r , 2r−1]2 code (Prove this)

Claim
Let G be the generator matrix of the Simplex Code. We have
t(G ) = 3.

Prove this.
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Hamming Code

Hamming Code is the dual of the Simplex code
Therefore, it is a [2r − 1, 2r − r − 1, 3]2 code (Prove this)
Write down the generator matrix for r = 3 case
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